
NSWI120 - Page 1/2 (exam #3 – 2015.01.23)
Write your answers to the special response sheet you received (with your name and photograph). If you are using more than single
sheet of paper for your answers, then mark each sheet with its number / total number of sheets you will hand over.

Task 1
Assume you have a computer with the original 8-bit ISA bus
(that supports 20-bit memory address space, 16-bit I/O
address space). It is a parallel bus without support for burst
transfers, and its clock frequency is 8 MHz.
We are designing a part of a 10BASE-T network interface
card controller that will be responsible only for receiving
network packets (completely independent packet sending
part will be designed later). The controller has a 12144 B
long built-in SRAM buffer designed as a cyclic queue for
temporary storage of Ethernet frames (assume max frame
length of 1518 bytes). Upon receipt of every complete
frame the controller should issue an interrupt request. The
controller should also support DMA bus mastering without
scatter/gather I/O support as the only way to allow
transfers of saved frame data from the controller’s buffer
into computer’s main memory.
Your task is to design and describe an HCI for such a
controller, so that its device driver can command it to
transfer data at least in units of whole packets. If the device
driver is not able to “download” the packet data fast
enough, the controller is allowed to overwrite the oldest
packet data with ones just received over the network. You
can use only I/O addresses in range $1000 to $2000 and
IRQs 10 to 12 for your HCI design.

Task 2
Assume variable x has all bits cleared to 0, with the
exception of bits 0 and 4 that are set to 1. Write down
value of the x variable in hexadecimal format after
execution of the following Pascal code:
x := x + (
($AABBCCDDEEFF0011 or
($0005500000000000 shl 8)) and (not(1) xor
65536));

Task 3
One of the goals for a higher programming language is to
shield programmers from specifics of concrete target
processor architecture. Having this in mind, is it ever
necessary to know the endianness of a target processor
when developing code in a higher programming language
(e.g. in Pascal)? If no, explain why. If yes, explain on an
example why.

Task 4
The Unicode encoding defines the following assignment of
codes to given characters: code 10Ch for char ‘Č’, code 61h
for char ‘a’, code 73h for char ‘s’.
We would like to store text “Čas” (without the quotes) as a
null-terminated string in little endian UTF-16 encoding
beginning at address 0. Using a hexadecimal format write
values of all bytes of memory (starting with byte at
address 0) representing the string given above in the given
encoding.

Task 5
The following figure shows a screenshot of a hex editor
displaying content of a 91 bytes long binary file:

All the data stored in the file are written in little endian
ordering. Beginning byte number 51 (counting from 0) a 64-
bit floating point real number in the IEEE 754 double format
is stored in the file (IEEE 754 doubles have a normalized
mantissa [significand] with hidden 1 occupying lowest 52
bits of the value, followed by 11 bit exponent in bias +1023
format, and a single sign bit). In the decimal system write
down value of the number defined above.

Task 6
Assume that into an OS we are implementing a mechanism
for sharing physical memory among multiple processes all
using a specific DLL library – we are targeting 32-bit CPUs
with paging support. The sharing mechanism must be
transparent for all the processes involved, and cannot break
the virtual address space separation between processes.
Thus for all the pages containing the DLL code, we need to
enforce no such process is able to write into them (we
explicitly do not support self-modifying code, any such
attempt should result in target thread termination).
Furthermore, for all the pages containing DLL global data so
called copy-on-write mechanism has to be implemented in
the OS (your task): as long as all processes are only reading
from pages containing DLL’s global data, all such processes
should share a single physical frame for these data.
However, whenever a process tries to write into such a
share page, a private copy of the page needs to be allocated
into a new frame (that is not shared with any other
processes). The process’s write attempt must succeed, but
it has to be directed into the newly allocated private frame.
Design such a sharing mechanism and in Pascal
(pseudocode) implement algorithm for the page fault
handler (for simplicity assume no “sharing unrelated” page
faults can occur). Assume the target CPU page table entries
contain all the typical information describing the mapping,
and that every page table entry has 4 bytes of spare space
that you can use for any purpose.

Task 7

Describe and explain how programs written Java or C# are
commonly compiled and executed. Include explanation of
the intermediate language term, and explain its purpose
and advantages in this context.

NSWI120 - Page 2/2

Task 8
Assume a computer with a simplified variant of 32-bit big
endian CPU Motorola 68000. The processor has the
following registers:
8 general purpose data registers D0 to D7 – they can be
used only as a direct source value or target for instructions;
8 general purpose address registers A0 to A7 – they can be
written only via special instructions or operand variants, in
regular instructions the address registers can be used only
as an address operand. Register A7 is commonly used as a
stack pointer (assume a common organization of the call
stack).
The CPU contains also a 32-bit register PC and a 16-bit
status register CCR (with all common flags).
Instruction set: Most instructions have 32-bit (.l suffix in
assembler), 16-bit (.w suffix), and 8-bit (.b suffix) variants.
The processor supports these basic instructions (<op> = any
operand variant, see below, An = any of the A0 to A7
registers, Dn = any of the D0 to D7 registers, the rightmost
operand is the target):

Instr. Operands Operand
sizes

Description

MOVE <op>,<op> 8, 16, 32 Value copy src→dest
MOVEA <op>,An 32 Copy to addr. reg.
ADD Dn,<op>

<op>,Dn
8, 16, 32 Adding of/into data

register
ADDA <op>,An 32 Adding into addr. reg.
SUB Dn,<op>

<op>,Dn
8, 16, 32 Subtraction

SUBA <op>,An 32 Subtraction of addr. r.
JSR <op> 32 Call subroutine
RTS None None Return from subrout.

Operands: The <op> symbol represents any of the following
variants for operands (written in typical Motorola 68000
assembler syntax):

 #imm immediate value

 Dn operation with Dn register

 (An) mem operation with address given by An

 imm(An) mem operation, target address is sum of An
register value and the imm value.

 -(An) predecrement: An register value is
decremented by size of the operation by bytes, and the
new value of An is used as the target address of the op.

 (An)+ postincrement: current value of An is used
as the target address of the operation, followed by
autoincrementing the An register value by size of the
operation

Program example: Assume register A0 contains
0x00100000, register D1 contains 0xFFFFFFFF, and
memory from address 0x00100000 contains bytes:
00 00 00 05 00 00 00 00 00 00 00 03, then after:

move.l #7,(a0)+ { copy 32-bit value 7 to 32-bit value at

address given by content of A0, and increment A0 by 4 }
add.w 6(a0),d1 { increment lowest 16-bits of D1

register by 16-bit value stored at address A0 + 6 }
adda.l #4,a0 { increment address in A0 by 4 }

register A0 will contain 0x00100008, D1 will contain
0xFFFF0002, and memory at 0x00100000 will contain
bytes: 00 00 00 07 00 00 00 00 00 00 00 03

Actual task: Rewrite the following Pascal program body into
an equivalent Motorola 68000 assembler program using a
common Motorola calling convention (arguments passed on
stack, stored from right to left, return value stored in the D0
register) and only using the instructions described above
(assume size of Integer type is 16 bits, and variable
Result begins at address 0x00010000):
var Result : Integer;
function Sum(a, b, c : Integer) : Integer;
{ main program body }
begin
 Result := 10;
 Result := Result + Sum(1, 2, 3);
end.

Task 9

Rewrite the following Sort procedure, so that on a two
processor system it could finish in a nontrivially shorter
time than on a single processor system:
type PLongint = ^Longint;
procedure Quicksort({ not using glob.vars }
 array : PLongint; n : Longint);
procedure Merge({ not using global vars }
 source1 : PLongint; source2 : PLongint;
 n1, n2 : Longint; target : PLongint);
{ n >= 1 }
procedure Sort(source : PLongint;
 target : PLongint; n : Longint);
var
 half : Longint;
begin
 half := n div 2;
 Quicksort(source, half);
 Quicksort(source + half, n - half);
 Merge(source, source + half,
 half, n - half, target);
end;
Write declarations of all multithreading related procedures
and functions you require from the target OS. Include a
short description of their expected behavior for each.

Task 10
Assume MS-DOS OS running on Intel 8088 CPU (16-bit CPU,
gen. purp. registers AX, BX, CX, DX, 16 & 16-bit [seg:ofs]
logical addresses, 20-bit physical address = seg*16+ofs, a
PC represented as two 16-bit registers CS:IP). Using a
command line debugger we have created the following
machine code of correct and tested function (its only
argument and return value are stored in the BX register):

We have stored this machine code into a 14 bytes long file
as a direct binary image of memory from address
5000:0000. After restarting the computer we will reload
the image at address 5000:01FF Will the function still
work and behave in the same way as before? Explain why!

